Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bis(2-amino-4-methylpyridinium) tetrachloridocuprate(II)

Rawhi H. Al-Far ${ }^{\text {a }}$ and Basem Fares Ali ${ }^{\text {b* }}$

${ }^{\text {a Faculty of Information Technology and Science, Al-Balqa'a Applied University, Salt, }}$ Jordan, and ${ }^{\mathbf{b}}$ Department of Chemistry, AI al-Bayt University, Mafraq 25113, Jordan Correspondence e-mail: bfali@aabu.edu.jo

Received 14 November 2008; accepted 8 December 2008

Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$; R factor $=0.059 ; w R$ factor $=0.145$; data-to-parameter ratio $=16.4$.

The asymmetric unit of the title compound, $\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$, consists of one cation and one half-anion, bisected by a twofold rotation axis through the metal center. The anion exhibits a geometry that is intermediate between a T_{d} and $D_{4 h}$ arrangement about the Cu atom. The crystal structure contains chains of cations alternating with stacks of anions. The cationic groups interact via offset face-to-face $\pi-\pi$ stacking, forming chains running along the c axis. The anion stacks are parallel to the cation chains, with no significant inter- nor intrastack $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions. There are several anion-cation hydrogen-bonding interactions of the ($\mathrm{N}-$ $\mathrm{H})_{\text {pyridine }} \cdots \mathrm{Cl}$ and $(\mathrm{N}-\mathrm{H})_{\text {amino }} \cdots \mathrm{Cl}$ types, connecting the chains of cations to the stacks of anions. Both the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\pi-\pi$ stacking interactions [centroid-centroid distances 3.61 (8) and 3.92 (2) A] contribute to the formation of a threedimensional supramolecular architecture.

Related literature

For related literature on organic-inorganic hybrids, see: AlFar, Ali \& Haddad (2008); Ali \& Al-Far (2007, 2008); Coffey et al. (2000). For bond-length and angle data, see: Raithby et al. (2000); Allen et al. (1987).

Experimental

Crystal data
$\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$
$M_{r}=423.65$
Monoclinic, C2/c
$a=11.313$ (3) A
$b=12.272$ (3) \AA
$c=14.264$ (4) \AA
$\beta=113.201$ (17) ${ }^{\circ}$

Data collection

Siemens P4 diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.874, T_{\text {max }}=0.898$
2039 measured reflections
1590 independent reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059 \quad 97$ parameters
$w R\left(F^{2}\right)=0.145$
$S=0.99$
1590 reflections

$$
V=1820.2(9) \AA^{3}
$$

$$
Z=4
$$

H -atom parameters constrained
Mo $K \alpha$ radiation
$\mu=1.78 \mathrm{~mm}^{-1}$
$T=293$ (2) K
$0.35 \times 0.06 \times 0.06 \mathrm{~mm}$

841 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
3 standard reflections every 97 reflections intensity decay: none
$\Delta \rho_{\text {max }}=0.40 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$).

$\mathrm{Cu} 1-\mathrm{Cl} 1$	$2.2614(19)$	$\mathrm{Cu} 1-\mathrm{Cl} 2$	$2.2698(19)$
$\mathrm{Cl} 1{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 1$	$94.33(10)$	$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$146.17(8)$
Symmetry code: (i) $-x+1, y,-z+\frac{3}{2}$.			

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 1$	0.86	2.65	$3.407(6)$	147
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl} 2^{\mathrm{i}}$	0.86	2.70	$3.360(6)$	134
$\mathrm{~N} 2-\mathrm{H} 2 A \cdots \mathrm{Cl} 1$	0.86	2.50	$3.294(6)$	153
$\mathrm{~N} 2-\mathrm{H} 2 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.86	2.53	$3.359(6)$	164

Symmetry codes: (i) $-x+1, y,-z+\frac{3}{2}$; (ii) $-x+\frac{3}{2}, y-\frac{1}{2},-z+\frac{3}{2}$.
Data collection: XSCANS (Bruker, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

This research was supported by Al al-Bayt University and Al-Balqa'a Applied University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2228).

metal-organic compounds

References

Al-Far, R. H., Ali, B. F. \& Haddad, S. F. (2008). Acta Cryst. E64, m689-m690. Ali, B. F. \& Al-Far, R. (2007). Acta Cryst. C63, m451-m453.
Ali, B. F. \& Al-Far, R. (2008). J. Chem. Crystallogr. 38, 689-693.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Bruker (1996). XSCANS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2005). SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Coffey, T. J., Landee, C. P., Robinson, W. T., Turnbull, M. M., Winn, M. \& Woodward, F. M. (2000). Inorg. Chim. Acta, 303, 54-60.
Raithby, P. R., Shields, G. P., Allen, F. H. \& Motherwell, W. D. S. (2000). Acta Cryst. B56, 444-454.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2009). E65, m73-m74 [doi:10.1107/S1600536808041652]

Bis(2-amino-4-methylpyridinium) tetrachloridocuprate(II)

R. H. Al-Far and B. F. Ali

Comment

Hybrid organic-inorganic low dimensional magnetic lattices of the formula (cation) ${ }_{2}\left[M X_{4}\right]$ are of special interest (Coffey et al., 2000; and references therein). A wide variety of these complexes are known. Some examples are those containing a protonated pyridine and 2-aminopyrimidine (Coffey et al., 2000). The magnetic exchange in these compounds is mediated by van der Waals contacts between the halide ions of the $\left[M X_{4}\right]^{2-}$ pseudo-tetrahedra and the contacts are determined by the crystal packing. In connection with ongoing studies (Al-Far et al., 2008; Ali \& Al-Far 2008; Ali \& Al-Far 2007) of the structural aspects of organic-inorganic hybrids, here we report the crystal structure of $\mathrm{Cu}(\mathrm{II})$-chloride complex with 2-amino-4-methylpyridinium as the organic cation.

The asymmetric unit in I contains one half anion (bisected by a two fold axis through the metal) and one cation (Fig. 1). The $\mathrm{Cu}-\mathrm{Cl}$ distances and $\mathrm{Cl}-\mathrm{Cu}-\mathrm{Cl}$, angles, Table 1, fall in the range reported previously for compounds containing $\mathrm{Cu}-\mathrm{Cl}$ anions (Raithby et al., 2000). The $\mathrm{CuCl}_{4}{ }^{2-}$ anion geometry is an intermediate between regular tetrahedral $\left(T_{d}\right)$ and square planar $\left(D_{4} h\right)$; the geometry of $\mathrm{Cu} X_{4}{ }^{2-}$ anions will always distort from T_{d} due to the Jahn-Teller effect, and this generally results in a compressed tetrahedral geometry. The extent of this compression is determined principally by electrostatic interactions with the environment - in this case, the hydrogen bonding.

In the cation bond lengths and angles are in accordance with normal values (Allen et. al., 1987).
The crystal packing (Fig. 2) show alternating stacks of anions and chains of cations. The anion stacks are parallel to the cation chains, with no significant inter- and intra-stack $\mathrm{Cl} \cdots \mathrm{Cl}$ interactions. The cations interact via offset face-to-face, $\pi-\pi$ stacking interactions leading to chains along the crystallographic c axis (Fig. 3), with alternating rings centroids separation distances of 3.61 (8) and 3.92 (2) \AA.

There are extensive cation \cdots anion intermolecular interactions (Table 2; Fig. 1). In these interactions H1A is involved in a bifurcated hydrogen bonding motif with Cl and $\mathrm{Cl}^{2}\left[\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots\left(\mathrm{Cl1}, \mathrm{Cl} 2^{\mathrm{i}}\right)\right.$ distances are 3.407 (6) and 3.360 (6) \AA, respectively, with $\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A} \cdots\left(\mathrm{Cl1}, \mathrm{Cl} 2^{\mathrm{i}}\right)$ angles being 147 and 134°; Symmetry codes: (i) $\left.-x+1, y,-z+3 / 2\right]$. The other interactions result between $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 1\left[\mathrm{~N} 1 \cdots \mathrm{Cl} 1\right.$ distance is $3.294(6)$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl} 1$ angle of $\left.153^{\circ}\right]$ and $\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ [with $\mathrm{N} 2 \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ distance of 3.359 (6) \AA and $\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl} 2^{\mathrm{ii}}$ angle being 164°; Symmetry code: (ii) $-x+3 / 2, y-1 / 2,-z+$ $3 / 2$]. These interactions and the symmetrically related ones connect the anion to four surrounding cations.

Both $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ and $\pi-\pi$ stacking interactions cause to the formation of a three-dimensional supramolecular architecture.

Experimental

To a hot solution $\left(100^{\circ} \mathrm{C}\right)$ of 2-Amino-4-methylpyridine (1 mmol) in 5 ml of $\mathrm{CH}_{3} \mathrm{CN}$ acidified with 2 ml of 3 M HCl , $\mathrm{CuCl}_{2} .2 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol})$ dissolved in $10 \mathrm{ml} \mathrm{CH}_{3} \mathrm{CN}$ was added. The resulting mixture was refluxed for 1.5 h . The solution

supplementary materials

was then allowed to stand undisturbed at room temperature. After 24 h yellow parallelepiped crystals were formed (yield: 0.170 g ; 80.2\%).

Refinement

Hydrogen atoms were positioned geometrically, with $\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93 \AA$ for aromatic H and $\mathrm{C}-\mathrm{H}=0.96$ \AA for methyl H , and constrained to ride on their parent atoms, $U_{\mathrm{iso}}(\mathrm{H})=x U_{\mathrm{eq}}(C, N)$, where $x=1.5$ for methyl H , and $x=$ 1.2 for all other H atoms.

Figures

Fig. 1. The structure of the title compound, viewed down c. Displacement ellipsoids are drawn at the 50% probability level. $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}-\mathrm{Cu}$ intermolecular interactions are shown as dashed lines. Symmetry operations: (i) $-x+1, y,-z+3 / 2$; (iii) $-1 / 2+x, 1 / 2+y, z$; (iv) $3 / 2-x$, $1 / 2+y, 3 / 2-z$. H atoms not involved in hydrogen bonding omitted for clarity.

Fig. 2. Crystal packing diagram showing alternating stacks of anions and chains of cations.

Fig. 3. Cationic chains along the crystallographic c axis, assembled via offset face-to-face ($\pi-\pi$ stacking; double broken lines) motifs. Centroids separation distances are $\mathrm{X} 2(2-x, y, 3 / 2$
$-z) \cdots \mathrm{X} 1(x, y, z) \cdots \mathrm{X} 3(2-x,-y, 2-z)$ are 3.61 (8) and 3.92 (2) \AA, respectively.

Bis(2-amino-4-methylpyridinium) tetrachloridocuprate(II)

Crystal data

$\left(\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{2}\right)_{2}\left[\mathrm{CuCl}_{4}\right]$
$M_{r}=423.65$

Monoclinic, C2/c
Hall symbol: -C 2yc
$a=11.313$ (3) \AA
$b=12.272$ (3) \AA
$c=14.264$ (4) \AA
$\beta=113.201$ (17) ${ }^{\circ}$
$V=1820.2(9) \AA^{3}$
$Z=4$
$F_{000}=860$
$D_{\mathrm{x}}=1.546 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 290 reflections
$\theta=2.5-27.3^{\circ}$
$\mu=1.78 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Parallelepiped, yellow
$0.35 \times 0.06 \times 0.06 \mathrm{~mm}$

Data collection

Siemens P4
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\text {min }}=0.874, T_{\text {max }}=0.898$
2039 measured reflections
1590 independent reflections
841 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.059$
$w R\left(F^{2}\right)=0.145$
$S=0.99$
1590 reflections
97 parameters
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=25.0^{\circ}$
$\theta_{\text {min }}=2.6^{\circ}$
$h=-1 \rightarrow 13$
$k=-14 \rightarrow 1$
$l=-16 \rightarrow 16$
3 standard reflections
every 97 reflections
intensity decay: none

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0577 P)^{2}\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.40 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.37 \mathrm{e} \AA^{-3}$
Primary atom site location: structure-invariant direct methods

Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu1	0.5000	$0.00098(10)$	0.7500	$0.0539(4)$
Cl1	$0.64416(17)$	$-0.12430(14)$	$0.74530(17)$	$0.0716(7)$
N1	$0.9282(5)$	$0.0108(5)$	$0.8601(4)$	$0.0552(15)$

H1A	0.8473	0.0000	0.8432	0.066^{*}
C12	$0.35031(15)$	$0.12618(14)$	$0.66064(15)$	$0.0632(6)$
C2	$1.0055(6)$	$-0.0772(6)$	$0.8719(5)$	$0.0487(18)$
N2	$0.9548(6)$	$-0.1746(5)$	$0.8554(5)$	$0.0736(19)$
H2A	0.8732	-0.1825	0.8372	0.088^{*}
H2B	1.0030	-0.2309	0.8626	0.088^{*}
C3	$1.1373(6)$	$-0.0577(6)$	$0.9018(5)$	$0.0551(19)$
H3A	1.1933	-0.1161	0.9116	0.066^{*}
C4	$1.1850(7)$	$0.0474(7)$	$0.9168(5)$	$0.0584(19)$
C5	$1.0969(9)$	$0.1339(6)$	$0.9006(6)$	$0.072(2)$
H5A	1.1258	0.2057	0.9089	0.087^{*}
C6	$0.9713(9)$	$0.1124(6)$	$0.8733(6)$	$0.071(2)$
H6A	0.9138	0.1697	0.8636	0.085^{*}
C7	$1.3250(7)$	$0.0704(8)$	$0.9462(7)$	$0.095(3)$
H7A	1.3691	0.0038	0.9454	0.143^{*}
H7B	1.3604	0.1013	1.0134	0.143^{*}
H7C	1.3352	0.1209	0.8985	0.143^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0460(7)$	$0.0348(6)$	$0.0783(9)$	0.000	$0.0215(6)$	0.000
C11	$0.0511(11)$	$0.0382(10)$	$0.1332(19)$	$-0.0006(8)$	$0.0444(11)$	$-0.0103(11)$
N1	$0.049(3)$	$0.052(4)$	$0.064(4)$	$0.006(3)$	$0.022(3)$	$-0.005(3)$
C12	$0.0447(10)$	$0.0374(10)$	$0.0867(14)$	$-0.0050(8)$	$0.0037(8)$	$0.0074(9)$
C2	$0.050(4)$	$0.046(4)$	$0.049(4)$	$0.004(4)$	$0.020(3)$	$0.000(3)$
N2	$0.059(4)$	$0.043(4)$	$0.121(6)$	$-0.008(3)$	$0.038(4)$	$-0.007(4)$
C3	$0.057(5)$	$0.049(5)$	$0.062(5)$	$0.007(4)$	$0.027(4)$	$-0.002(4)$
C4	$0.063(5)$	$0.058(5)$	$0.055(5)$	$-0.007(4)$	$0.023(4)$	$0.002(4)$
C5	$0.097(7)$	$0.041(5)$	$0.080(6)$	$-0.006(5)$	$0.035(5)$	$-0.003(4)$
C6	$0.073(6)$	$0.049(5)$	$0.085(6)$	$0.008(5)$	$0.026(5)$	$-0.004(5)$
C7	$0.078(6)$	$0.104(8)$	$0.109(7)$	$-0.038(6)$	$0.044(6)$	$-0.031(6)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu}-\mathrm{Cl1} 1^{\text {i }}$	2.2615 (19)	C3-C4	1.381 (9)
$\mathrm{Cu}-\mathrm{Cl} 1$	2.2614 (19)	C3-H3A	0.9300
$\mathrm{Cu}-\mathrm{Cl}_{2}{ }^{\text {i }}$	2.2698 (19)	C4-C5	1.412 (10)
$\mathrm{Cu}-\mathrm{Cl} 2$	2.2698 (19)	C4-C7	1.496 (10)
N1-C6	1.326 (9)	C5-C6	1.343 (11)
N1-C2	1.358 (8)	C5-H5A	0.9300
N1-H1A	0.8600	C6-H6A	0.9300
$\mathrm{C} 2-\mathrm{N} 2$	1.307 (8)	C7-H7A	0.9600
C2-C3	1.400 (9)	C7-H7B	0.9600
N2-H2A	0.8600	C7-H7C	0.9600
N2-H2B	0.8600		
$\mathrm{Cl1}-\mathrm{Cu}-\mathrm{Cl} 1$	94.33 (10)	C2-C3-H3A	119.6
$\mathrm{Cl1}-\mathrm{Cu}-\mathrm{Cl}^{\mathrm{i}}{ }^{\mathrm{i}}$	146.17 (8)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	118.0 (7)

sup-4

supplementary materials

$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2^{\mathrm{i}}$	$95.15(7)$
$\mathrm{Cl} 1^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 2$	$95.15(6)$
$\mathrm{Cl} 1-\mathrm{Cu} 1-\mathrm{Cl} 2$	$146.17(8)$
$\mathrm{Cl} 2^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{Cl} 2$	$94.80(10)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$123.2(7)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.4
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	118.4
$\mathrm{~N} 2-\mathrm{C} 2-\mathrm{N} 1$	$119.3(6)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3$	$123.4(7)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$117.3(7)$
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~A}$	120.0
$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{H} 2 \mathrm{~A}-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~B}$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.8(7)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	119.6
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{N} 2$	$-178.6(7)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.5(10)$
$\mathrm{N} 2-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$179.1(7)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-1.0(10)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.3(11)$
Symmetry codes: (i) $-x+1, y,-z+3 / 2$.	

$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$121.7(7)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 7$	$120.3(8)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.8(8)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	120.1
$\mathrm{~N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.9(8)$
$\mathrm{N} 1-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.5
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6 \mathrm{~A}$	119.5
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{~B}$	109.5
$\mathrm{C} 4-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~A}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{H} 7 \mathrm{~B}-\mathrm{C} 7-\mathrm{H} 7 \mathrm{C}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 7$	$-178.4(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.2(11)$
$\mathrm{C} 7-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$179.3(8)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.6(12)$
C4-C5-C6-N1	$-0.8(12)$

Hydrogen-bond geometry ($\left.\AA,{ }^{\circ}\right)$

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl1}$	0.86	2.65	$3.407(6)$	147
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl2}$				
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{Cl1}$	0.86	2.70	$3.360(6)$	134
$\mathrm{~N} 2 — \mathrm{H} 2 \mathrm{~B} \cdots \mathrm{Cl2}$				
		0.86	2.50	$3.294(6)$
153				

Symmetry codes: (i) $-x+1, y,-z+3 / 2$; (ii) $-x+3 / 2, y-1 / 2,-z+3 / 2$.

supplementary materials

Fig. 1

Fig. 2

supplementary materials

Fig. 3

